Search results
Results from the WOW.Com Content Network
The complexity of n is at most 3 log 2 n (approximately 4.755 log 3 n): an expression of this length for n can be found by applying Horner's method to the binary representation of n. [2] Almost all integers have a representation whose length is bounded by a logarithm with a smaller constant factor, 3.529 log 3 n. [3]
An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.
The only problem is that we don't have room in log space for a binary counter that goes up to 2 n. To get around this we replace it with a randomized counter, which simply flips n coins and stops and rejects if they all land on heads. Since this event has probability 2 −n, we expect to take 2 n steps on average before stopping. It only needs ...
The worst-case complexity of the algorithm is dominated by the perfect matching step, which has () complexity. [2] Serdyukov's paper claimed O ( n 3 log n ) {\displaystyle O(n^{3}\log n)} complexity, [ 4 ] because the author was only aware of a less efficient perfect matching algorithm.
Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).
The sort has a known time complexity of O(n 2), and after the subroutine runs the algorithm must take an additional 55n 3 + 2n + 10 steps before it terminates. Thus the overall time complexity of the algorithm can be expressed as T(n) = 55n 3 + O(n 2). Here the terms 2n + 10 are subsumed within the faster-growing O(n 2). Again, this usage ...
The PCP theorem states that NP = PCP[O(log n), O(1)],. where PCP[r(n), q(n)] is the class of problems for which a probabilistically checkable proof of a solution can be given, such that the proof can be checked in polynomial time using r(n) bits of randomness and by reading q(n) bits of the proof, correct proofs are always accepted, and incorrect proofs are rejected with probability at least 1/2.