enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams.

  3. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.

  4. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    The actual approach appears to have been developed by Clebsch in 1862. [2] Macaulay's method has been generalized for Euler-Bernoulli beams with axial compression, [3] to Timoshenko beams, [4] to elastic foundations, [5] and to problems in which the bending and shear stiffness changes discontinuously in a beam. [6]

  5. Cantilever - Wikipedia

    en.wikipedia.org/wiki/Cantilever

    The top and bottom example may be considered structurally equivalent, depending on the effective stiffness of the spring and beam element. A cantilever is a rigid structural element that extends horizontally and is unsupported at one end. Typically it extends from a flat vertical surface such as a wall, to which it must be firmly attached. Like ...

  6. Moment distribution method - Wikipedia

    en.wikipedia.org/wiki/Moment_distribution_method

    The bending stiffness (EI/L) of a member is represented as the flexural rigidity of the member (product of the modulus of elasticity (E) and the second moment of area (I)) divided by the length (L) of the member. What is needed in the moment distribution method is not the specific values but the ratios of bending stiffnesses between all members.

  7. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    If the beam is bent side to side, it functions as an 'H', where it is less efficient. The most efficient shape for both directions in 2D is a box (a square shell); the most efficient shape for bending in any direction, however, is a cylindrical shell or tube. For unidirectional bending, the Ɪ-beam or wide flange beam is superior. [5]

  8. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.

  9. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Continuum mechanics is valid for a bending beam. The stress at a cross section varies linearly in the direction of bending, and is zero at the centroid of every cross section. The bending moment at a particular cross section varies linearly with the second derivative of the deflected shape at that location. The beam is composed of an isotropic ...