Search results
Results from the WOW.Com Content Network
Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...
However, a line integral involves the application of the vector dot product, and when this is extended to 4-dimensional spacetime, a change of sign is introduced to either the spatial co-ordinates or the time co-ordinate depending on the convention used. This is due to the non-Euclidean nature of spacetime.
Spacetime mathematically viewed as R 4 endowed with this bilinear form is known as Minkowski space M. The Lorentz transformation is thus an element of the group O(1, 3), the Lorentz group or, for those that prefer the other metric signature, O(3, 1) (also called the Lorentz group). [nb 3] One has:
Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime.
The Lorentz group is a six-dimensional noncompact non-abelian real Lie group that is not connected. The four connected components are not simply connected. [1] The identity component (i.e., the component containing the identity element) of the Lorentz group is itself a group, and is often called the restricted Lorentz group, and is denoted SO ...
The velocity, in contrast, is the rate of change of the position in (three-dimensional) space of the object, as seen by an observer, with respect to the observer's time. The value of the magnitude of an object's four-velocity, i.e. the quantity obtained by applying the metric tensor g to the four-velocity U , that is ‖ U ‖ 2 = U ⋅ U = g ...
The principle of local Lorentz covariance, which states that the laws of special relativity hold locally about each point of spacetime, lends further support to the choice of a manifold structure for representing spacetime, as locally around a point on a general manifold, the region 'looks like', or approximates very closely Minkowski space ...
Minkowski space is named for the German mathematician Hermann Minkowski, who around 1907 realized that the theory of special relativity (previously developed by Poincaré and Einstein) could be elegantly described using a four-dimensional spacetime, which combines the dimension of time with the three dimensions of space.