Ad
related to: is nhr edg or ewg best organic chemistry
Search results
Results from the WOW.Com Content Network
An electron donating group (EDG) or electron releasing group (ERG, Z in structural formulas) is an atom or functional group that donates some of its electron density into a conjugated π system via resonance (mesomerism) or inductive effects (or induction)—called +M or +I effects, respectively—thus making the π system more nucleophilic.
An electron-withdrawing group (EWG) is a group or atom that has the ability to draw electron density toward itself and away from other adjacent atoms. [1] This electron density transfer is often achieved by resonance or inductive effects.
Delocalizing the radical ion stabilizes the transition state structure. As a result, the energy of activation decreases, enhancing the rate of the overall reaction. According to the captodative effect, the rate of a reaction is the greatest when both the EDG and EWG are able to delocalize the radical ion in the transition state structure. [7]
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound. It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [ 1 ]
In organic chemistry, the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry (stereochemistry) of a molecule. The term polar effect is sometimes used to refer to electronic effects, but also may have the more narrow definition of effects resulting from non-conjugated substituents.
In chemistry, a leaving group is defined by the IUPAC as an atom or group of atoms that detaches from the main or residual part of a substrate during a reaction or elementary step of a reaction. [1] However, in common usage, the term is often limited to a fragment that departs with a pair of electrons in heterolytic bond cleavage. [2]
In organic chemistry, alkanolamines (amino alcohols) are organic compounds that contain both hydroxyl (−OH) and amino (−NH 2, −NHR, and −NR 2) functional groups on an alkane backbone. Most alkanolamines are colorless. [1] [citation needed] Alkanolamines
In chemistry, functionality is the presence of functional groups in a molecule. A monofunctional molecule possesses one functional group, a bifunctional (or difunctional) two, a trifunctional three, and so forth. In organic chemistry (and other fields of chemistry), a molecule's functionality has a decisive influence on its reactivity.
Ad
related to: is nhr edg or ewg best organic chemistry