enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiply perfect number - Wikipedia

    en.wikipedia.org/wiki/Multiply_perfect_number

    In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number. For a given natural number k , a number n is called k -perfect (or k -fold perfect) if the sum of all positive divisors of n (the divisor function , σ ( n )) is equal to kn ; a number is thus perfect if and ...

  3. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.

  4. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every Mersenne prime M p = 2 p − 1 has a corresponding perfect number M p ...

  5. Correctness (computer science) - Wikipedia

    en.wikipedia.org/wiki/Correctness_(computer_science)

    For example, successively searching through integers 1, 2, 3, … to see if we can find an example of some phenomenon—say an odd perfect number—it is quite easy to write a partially correct program (see box). But to say this program is totally correct would be to assert something currently not known in number theory.

  6. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  7. Narcissistic number - Wikipedia

    en.wikipedia.org/wiki/Narcissistic_number

    In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.

  8. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The most naïve algorithm would be to cycle through all subsets of n numbers and, for every one of them, check if the subset sums to the right number. The running time is of order O ( 2 n ⋅ n ) {\displaystyle O(2^{n}\cdot n)} , since there are 2 n {\displaystyle 2^{n}} subsets and, to check each subset, we need to sum at most n elements.

  9. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    In 1950, Hamming introduced the [7,4] Hamming code. It encodes four data bits into seven bits by adding three parity bits. As explained earlier, it can either detect and correct single-bit errors or it can detect (but not correct) both single and double-bit errors.