Search results
Results from the WOW.Com Content Network
The mixing time of a Markov chain is the number of steps needed for this convergence to happen, to a suitable degree of accuracy. A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains ...
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has a unique stationary distribution π and, regardless of the initial state, the time-t distribution of the chain converges to π as t tends to infinity.
Contingency table; Continuity correction; Continuous distribution – see Continuous probability distribution; Continuous mapping theorem; Continuous probability distribution; Continuous stochastic process; Continuous-time Markov process; Continuous-time stochastic process; Contrast (statistics) Control chart; Control event rate; Control limits ...
The first exit time (from A) is defined to be the first hit time for S \ A, the complement of A in S. Confusingly, this is also often denoted by τ A. [1] The first return time is defined to be the first hit time for the singleton set {X 0 (ω)}, which is usually a given deterministic element of the state space, such as the origin of the ...
Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain. [5]