Search results
Results from the WOW.Com Content Network
At the nerve terminal, neurotransmitters are present within 35–50 nm membrane-encased vesicles called synaptic vesicles. To release neurotransmitters, the synaptic vesicles transiently dock and fuse at the base of specialized 10–15 nm cup-shaped lipoprotein structures at the presynaptic membrane called porosomes. [15]
Diagram of a chemical synaptic connection. In the nervous system, a synapse [1] is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending on the mechanism of signal transmission between neurons.
Chemical synaptic transmission is the transfer of neurotransmitters or neuropeptides from a presynaptic axon to a postsynaptic dendrite. [3] Unlike an electrical synapse, the chemical synapses are separated by a space called the synaptic cleft, typically measured between 15 and 25 nm. Transmission of an excitatory signal involves several steps ...
The events of the synaptic vesicle cycle can be divided into a few key steps: [10] 1. Trafficking to the synapse. Synaptic vesicle components in the presynaptic neuron are initially trafficked to the synapse using members of the kinesin motor family. In C. elegans the major motor for synaptic vesicles is UNC-104. [11]
Major elements in synaptic transmission. An electrochemical wave called an action potential travels along the axon of a neuron . When the wave reaches a synapse , it provokes release of a small amount of neurotransmitter molecules, which bind to chemical receptor molecules in the membrane of the target cell.
There was substantial debate on whether the transmission of information between neurons was chemical or electrical in the first decades of the twentieth century, but chemical synaptic transmission was seen as the only answer after Otto Loewi's demonstration of chemical communication between neurons and heart muscle. Thus, the discovery of ...
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
An action potential (or nerve impulse) is a transient alteration of the transmembrane voltage (or membrane potential) across the membrane in an excitable cell generated by the activity of voltage-gated ion channels embedded in the membrane. The best known action potentials are pulse-like waves that travel along the axons of neurons.