Search results
Results from the WOW.Com Content Network
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test ...
Positive data: Data that enable the investigator to reject a null hypothesis. Alternative hypothesis (H 1) Suppose the data can be realized from an N(0,1) distribution. For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained.
A one-tailed hypothesis (tested using a one-sided test) [2] is an inexact hypothesis in which the value of a parameter is specified as being either: above or equal to a certain value, or; below or equal to a certain value. A one-tailed hypothesis is said to have directionality. Fisher's original (lady tasting tea) example was a one-tailed test ...
First, estimate the expected value μ of T under the null hypothesis, and obtain an estimate s of the standard deviation of T. Second, determine the properties of T : one tailed or two tailed. For Null hypothesis H 0: μ≥μ 0 vs alternative hypothesis H 1: μ<μ 0, it is lower/left-tailed (one tailed).
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
The term "t-statistic" is abbreviated from "hypothesis test statistic". [1] In statistics, the t-distribution was first derived as a posterior distribution in 1876 by Helmert [2] [3] [4] and Lüroth. [5] [6] [7] The t-distribution also appeared in a more general form as Pearson type IV distribution in Karl Pearson's 1895 paper. [8]
(This is a 1-tailed test.) In such a scenario, achieving this with a probability of at least 1−β when the alternative hypothesis H a is true becomes imperative. Here, the sample average originates from a Normal distribution with a mean of μ *. Thus, the requirement is expressed as:
To avoid the problem, many authors discourage the use of fixed significance levels when dealing with discrete problems. [16] [17] The decision to condition on the margins of the table is also controversial. [19] [20] The p-values derived from Fisher's test come from the distribution that conditions on the margin totals. In this sense, the test ...