Search results
Results from the WOW.Com Content Network
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
Unit-weighted regression is a method of robust regression that proceeds in three steps. First, predictors for the outcome of interest are selected; ideally, there should be good empirical or theoretical reasons for the selection.
Front page of a floppy disk controller data sheet (1979) A datasheet, data sheet, or spec sheet is a document that summarizes the performance and other characteristics of a product, machine, component (e.g., an electronic component), material, subsystem (e.g., a power supply), or software in sufficient detail that allows a buyer to understand what the product is and a design engineer to ...
In decision theory, the weighted sum model (WSM), [1] [2] also called weighted linear combination (WLC) [3] or simple additive weighting (SAW), [4] is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.
The process of frequency weighting involves emphasizing the contribution of particular aspects of a phenomenon (or of a set of data) over others to an outcome or result; thereby highlighting those aspects in comparison to others in the analysis. That is, rather than each variable in the data set contributing equally to the final result, some of ...
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
In normal unweighted samples, the N in the denominator (corresponding to the sample size) is changed to N − 1 (see Bessel's correction). In the weighted setting, there are actually two different unbiased estimators, one for the case of frequency weights and another for the case of reliability weights.
from definition of the weighted mean. using normalized (convex) weights definition (weights that sum to 1): ′ = =. sum of uncorrelated random variables. If the weights are constants (from the basic properties of the variance). Another way to say it is that the weights are known upfront for each observation i.