Search results
Results from the WOW.Com Content Network
The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only. The column is free from initial stress. The weight of the column is neglected. The column is initially straight (no eccentricity of the axial load).
, the hydraulic diameter of the pipe (for a pipe of circular section, this equals D; otherwise D H = 4A/P for a pipe of cross-sectional area A and perimeter P) (m); v {\displaystyle \langle v\rangle } , the mean flow velocity , experimentally measured as the volumetric flow rate Q per unit cross-sectional wetted area (m/s);
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [3]
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...
The Blasius correlation is the simplest equation for computing the Darcy friction factor. Because the Blasius correlation has no term for pipe roughness, it is valid only to smooth pipes. However, the Blasius correlation is sometimes used in rough pipes because of its simplicity. The Blasius correlation is valid up to the Reynolds number 100000.
The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.
It is also known as the stiffness to weight ratio or specific stiffness. High specific modulus materials find wide application in aerospace applications where minimum structural weight is required. The dimensional analysis yields units of distance squared per time squared.
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow , an English mathematician .