Search results
Results from the WOW.Com Content Network
In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O 2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O 2 H), superoxide (O 2 −), [1] hydroxyl radical (OH.), and singlet oxygen. [2] ROS are pervasive because they are readily produced from O 2, which is ...
Reactive nitrogen species act together with reactive oxygen species (ROS) to damage cells, causing nitrosative stress. Therefore, these two species are often collectively referred to as ROS/RNS. Reactive nitrogen species are also continuously produced in plants as by-products of aerobic metabolism or in response to stress. [3]
Prochlorococcus do not have mechanisms to degrade reactive oxygen species and rely on heterotrophs to protect them. [17] The bacterium accounts for an estimated 13–48% of the global photosynthetic production of oxygen, and forms part of the base of the ocean food chain. [18]
Reactive solutes are readily biologically assimilated by the autotrophic and heterotrophic biota of the stream; examples can include inorganic nitrogen species such as nitrate or ammonium, some forms of phosphorus (e.g., soluble reactive phosphorus), and silica. Other solutes can be considered conservative, which indicates that the solute is ...
The six aforementioned elements are used by organisms in a variety of ways. Hydrogen and oxygen are found in water and organic molecules, both of which are essential to life. Carbon is found in all organic molecules, whereas nitrogen is an important component of nucleic acids and proteins.
Production of mitochondrial ROS, mitochondrial ROS. Mitochondrial ROS (mtROS or mROS) are reactive oxygen species (ROS) that are produced by mitochondria. [1] [2] [3] Generation of mitochondrial ROS mainly takes place at the electron transport chain located on the inner mitochondrial membrane during the process of oxidative phosphorylation.
Global cycling of reactive nitrogen [1] including industrial fertilizer production, [2] nitrogen fixed by natural ecosystems, [3] nitrogen fixed by oceans, [4] nitrogen fixed by agricultural crops, [5] NO x emitted by biomass burning, [6] NO x emitted from soil, [7] nitrogen fixed by lightning, [8] NH 3 emitted by terrestrial ecosystems, [9] deposition of nitrogen to terrestrial surfaces and ...
It plays a role in antioxidant and reactive oxygen species responses. [60] Nitric oxide sensing in plants is mediated by the N-end rule of proteolysis [61] [62] and controls abiotic stress responses such as flooding-induced hypoxia, [63] salt and drought stress. [64] [65] [66]