enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [1] [2] [3] and that the particles are free.

  3. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    For example, for visible light, the refractive index of glass is typically around 1.5, meaning that light in glass travels at ⁠ c / 1.5 ⁠ ≈ 200 000 km/s (124 000 mi/s); the refractive index of air for visible light is about 1.0003, so the speed of light in air is about 90 km/s (56 mi/s) slower than c.

  4. Four-velocity - Wikipedia

    en.wikipedia.org/wiki/Four-velocity

    The value of the magnitude of an object's four-velocity, i.e. the quantity obtained by applying the metric tensor g to the four-velocity U, that is ‖ U ‖ 2 = U ⋅ U = g μν U ν U μ, is always equal to ±c 2, where c is the speed of light. Whether the plus or minus sign applies depends on the choice of metric signature.

  5. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of "rest mass", measured when the system is at rest, corresponds ...

  6. Klein–Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Klein–Gordon_equation

    The speed of light and Planck constant are often seen to clutter the equations, so they are therefore often expressed in natural units where = =. Klein–Gordon equation in natural units with metric signature η μ ν = diag ( ± 1 , ∓ 1 , ∓ 1 , ∓ 1 ) {\displaystyle \eta _{\mu \nu }={\text{diag}}(\pm 1,\mp 1,\mp 1,\mp 1)}

  7. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  8. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic mass is the sum total quantity of energy in a body or system (divided by c2). Thus, the mass in the formula is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds. In the center of momentum frame, and the relativistic mass equals the rest mass.

  9. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    Spacetime diagram. The world line (yellow path) of a photon, which is at location x = 0 at time ct = 0. A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity. Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction ...