Search results
Results from the WOW.Com Content Network
The process of initiation of translation in eukaryotes. Translation initiation is the process by which the ribosome and its associated factors bind to an mRNA and are assembled at the start codon. This process is defined as either cap-dependent, in which the ribosome binds initially at the 5' cap and then travels to the stop codon, or as cap ...
The termination of translation requires coordination between release factor proteins, the mRNA sequence, and ribosomes. Once a termination codon is read, release factors RF-1, RF-2, and RF-3 contribute to the hydrolysis of the growing polypeptide, which terminates the chain. Bases downstream the stop codon affect the activity of these release ...
The process of amino acid building to create protein in translation is a subject of various physic models for a long time starting from the first detailed kinetic models such as [24] or others taking into account stochastic aspects of translation and using computer simulations. Many chemical kinetics-based models of protein synthesis have been ...
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
The IF2 initiation factor is a crucial component in the process of protein synthesis. The largest among the three indispensable translation initiation factors is IF-2, which possesses a molecular mass of 97 kDa. [17] [18] The protein has many domains, including an N-terminal domain, a GTPase domain, a linker region, C1, C2, and C-terminal domains.
Orthologs of many of the factors involved in human translation are shared by a range of eukaryotic organisms; some of which are used as model systems for the investigation of translation initiation and elongation, for example: sea urchin eggs upon fertilization, [5] rodent brain [6] and rabbit reticulocytes. [7]
Therefore, the rest of the operon will be transcribed and translated, so that tryptophan can be produced. Thus, domain 4 is an attenuator. Without domain 4, translation can continue regardless of the level of tryptophan. [9] The attenuator sequence has its codons translated into a leader peptide, but is not part of the trp operon gene sequence.
Certain factors play key roles in the activation and inhibition of transcription, where they regulate primary transcript production. Transcription produces primary transcripts that are further modified by several processes. These processes include the 5' cap, 3'-polyadenylation, and alternative splicing. In particular, alternative splicing ...