Search results
Results from the WOW.Com Content Network
The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by , where is the distance of the point from the axis, and is the mass. For an extended rigid body, the moment of inertia is just the sum of all ...
The expression ″thin″ indicates that the shell thickness is negligible. It is a special case of the thick-walled cylindrical tube of the same mass for r 1 = r 2. Also, a point mass m at the end of a rod of length r has this same moment of inertia and the value r is called the radius of gyration. Solid cylinder of radius r, height h and mass m.
The moment of inertia is the 2nd moment of mass: = for a point mass, for a collection of point masses, or () for an object with mass distribution (). The center of mass is often (but not always) taken as the reference point.
Similarly, for a point mass the moment of inertia is defined as, = where is the radius of the point mass from the center of rotation, and for any collection of particles as the sum, =. Angular momentum's dependence on position and shape is reflected in its units versus linear momentum: kg⋅m 2 /s or N⋅m⋅s for angular momentum versus kg⋅m ...
The moment of inertia is measured in kilogram metre² (kg m 2). It depends on the object's mass: increasing the mass of an object increases the moment of inertia. It also depends on the distribution of the mass: distributing the mass further from the center of rotation increases the moment of inertia by a greater degree.
r cm is the position vector of the center of mass of the body with respect to the point about which moments are summed, a cm is the linear acceleration of the center of mass of the body, m is the mass of the body, α is the angular acceleration of the body, and; I is the moment of inertia of the body about its center of mass.
In physics, moment of inertia is strictly the second moment of mass with respect to distance from an axis: =, where r is the distance to some potential rotation axis, and the integral is over all the infinitesimal elements of mass, dm, in a three-dimensional space occupied by an object Q. The MOI, in this sense, is the analog of mass for ...
One may instead change to a coordinate frame fixed in the rotating body, in which the moment of inertia tensor is constant. Using a reference frame such as that at the center of mass, the frame's position drops out of the equations. In any rotating reference frame, the time derivative must be replaced so that the equation becomes