Search results
Results from the WOW.Com Content Network
XNOR gates are represented in most TTL and CMOS IC families. The standard 4000 series CMOS IC is the 4077, and the TTL IC is the 74266 (although an open-collector implementation). Both include four independent, two-input, XNOR gates. The (now obsolete) 74S135 implemented four two-input XOR/XNOR gates or two three-input XNOR gates.
Logical equality is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both operands are false or both operands are true. The truth table of p EQ q (also written as p = q, p ↔ q, Epq, p ≡ q, or p == q) is as follows: The Venn diagram of A EQ B (red part is true)
Corner quotes, also called “Quine quotes”; for quasi-quotation, i.e. quoting specific context of unspecified (“variable”) expressions; [3] also used for denoting Gödel number; [4] for example “āGā” denotes the Gödel number of G. (Typographical note: although the quotes appears as a “pair” in unicode (231C and 231D), they ...
Examples of digital comparator include the CMOS 4063 and 4585 and the TTL 7485 and 74682. An XNOR gate is a basic comparator, because its output is "1" only if its two input bits are equal. The analog equivalent of digital comparator is the voltage comparator.
With two inputs, XOR is true if and only if the inputs differ (one is true, one is false). With multiple inputs, XOR is true if and only if the number of true inputs is odd. [1] It gains the name "exclusive or" because the meaning of "or" is ambiguous when both operands are true. XOR excludes that case. Some informal ways of describing XOR are ...
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of and is sometimes expressed as , ::, , or , depending on the notation being used.
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...