Search results
Results from the WOW.Com Content Network
A liquid in a partial vacuum, i.e., under a lower pressure, has a lower boiling point than when that liquid is at atmospheric pressure. Because of this, water boils at 100°C (or with scientific precision: 99.97 °C (211.95 °F)) under standard pressure at sea level, but at 93.4 °C (200.1 °F) at 1,905 metres (6,250 ft) [3] altitude.
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
The boiling point of water is typically considered to be 100 °C (212 °F; 373 K), especially at sea level. Pressure and a change in the composition of the liquid may alter the boiling point of the liquid. High elevation cooking generally takes longer since boiling point is a function of atmospheric pressure.
At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [1] 760 Torr, 101.325 kPa, or 14.69595 psi. For example, at any given temperature, methyl chloride has the highest vapor pressure of any of the liquids in the chart.
At the nominal body temperature of 37 °C (99 °F), water has a vapour pressure of 6.3 kilopascals (47 mmHg); which is to say, at an ambient pressure of 6.3 kilopascals (47 mmHg), the boiling point of water is 37 °C (99 °F). A pressure of 6.3 kPa—the Armstrong limit—is about 1/16 of the standard sea-level atmospheric pressure of 101.3 ...
The standard atmosphere was originally defined as the pressure exerted by a 760 mm column of mercury at 0 °C (32 °F) and standard gravity (g n = 9.806 65 m/s 2). [2] It was used as a reference condition for physical and chemical properties, and the definition of the centigrade temperature scale set 100 °C as the boiling point of water at this pressure.
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
High-altitude cooking is cooking done at altitudes that are considerably higher than sea level. At elevated altitudes, any cooking that involves boiling or steaming generally requires compensation for lower temperatures because the boiling point of water is lower at higher altitudes due to the decreased atmospheric pressure. The effect starts ...