enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...

  3. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  4. Encog - Wikipedia

    en.wikipedia.org/wiki/Encog

    Encog is a machine learning framework available for Java and .Net. [1] Encog supports different learning algorithms such as Bayesian Networks , Hidden Markov Models and Support Vector Machines . However, its main strength lies in its neural network algorithms.

  5. Monte Carlo tree search - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_tree_search

    This step is sometimes also called playout or rollout. A playout may be as simple as choosing uniform random moves until the game is decided (for example in chess, the game is won, lost, or drawn). Backpropagation: Use the result of the playout to update information in the nodes on the path from C to R. Step of Monte Carlo tree search.

  6. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    Similar ideas have been used in feed-forward neural networks for unsupervised pre-training to structure a neural network, making it first learn generally useful feature detectors. Then the network is trained further by supervised backpropagation to classify labeled data.

  7. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    In 1986, David E. Rumelhart et al. popularised backpropagation but did not cite the original work. [29] [8] In 2003, interest in backpropagation networks returned due to the successes of deep learning being applied to language modelling by Yoshua Bengio with co-authors. [30]

  8. Category:Articles with example Java code - Wikipedia

    en.wikipedia.org/wiki/Category:Articles_with...

    Persist (Java tool) Pointer (computer programming) Polymorphism (computer science) Population-based incremental learning; Prepared statement; Producer–consumer problem; Project Valhalla (Java language) Prototype pattern; Proxy pattern

  9. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]