enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ocean deoxygenation - Wikipedia

    en.wikipedia.org/wiki/Ocean_deoxygenation

    This type of ocean deoxygenation is also called dead zones. Secondly, ocean deoxygenation occurs also in the open ocean. In that part of the ocean, there is nowadays an ongoing reduction in oxygen levels. As a result, the naturally occurring low oxygen areas (so called oxygen minimum zones (OMZs)) are now expanding slowly. [4]

  3. Hypoxia (environmental) - Wikipedia

    en.wikipedia.org/wiki/Hypoxia_(environmental)

    Many organisms require hypoxic conditions. Oxygen is poisonous to anaerobic bacteria for example. [3] Oxygen depletion is typically expressed as a percentage of the oxygen that would dissolve in the water at the prevailing temperature and salinity. A system with low concentration—in the range between 1 and 30% saturation—is called hypoxic ...

  4. Sea - Wikipedia

    en.wikipedia.org/wiki/Sea

    Climate change is likely to reduce levels of oxygen in surface waters since the solubility of oxygen in water falls at higher temperatures. [40] Ocean deoxygenation is projected to increase hypoxia by 10%, and triple suboxic waters (oxygen concentrations 98% less than the mean surface concentrations), for each 1 °C of upper-ocean warming. [41]

  5. Water aeration - Wikipedia

    en.wikipedia.org/wiki/Water_aeration

    Natural aeration is a type of both sub-surface and surface aeration. It can occur through sub-surface aquatic plants. Through the natural process of photosynthesis, water plants release oxygen into the water providing it with the oxygen necessary for fish to live and aerobic bacteria to break down excess nutrients. [3]

  6. Anoxic waters - Wikipedia

    en.wikipedia.org/wiki/Anoxic_waters

    Anoxia is further influenced by biochemical oxygen demand (BOD), which is the amount of oxygen used by marine organisms in the process of breaking down organic matter. BOD is influenced by the type of organisms present, the pH of the water, temperature, and the type of organic matter present in the area.

  7. Geological history of oxygen - Wikipedia

    en.wikipedia.org/wiki/Geological_history_of_oxygen

    At current rates of primary production, today's concentration of oxygen could be produced by photosynthetic organisms in 2,000 years. [4] In the absence of plants, the rate of oxygen production by photosynthesis was slower in the Precambrian, and the concentrations of O 2 attained were less than 10% of today's and probably fluctuated greatly.

  8. Dead zone (ecology) - Wikipedia

    en.wikipedia.org/wiki/Dead_zone_(ecology)

    Red circles show the location and size of many dead zones (in 2008). Black dots show dead zones of unknown size. The size and number of marine dead zones—areas where the deep water is so low in dissolved oxygen that sea creatures cannot survive (except for some specialized bacteria)—have grown in the past half-century.

  9. Oxygen minimum zone - Wikipedia

    en.wikipedia.org/wiki/Oxygen_minimum_zone

    In OMZs oxygen concentration drops to levels <10 nM at the base of the oxycline and can remain anoxic for over 700 m depth. [7] This lack of oxygen can be reinforced or increased due to physical processes changing oxygen supply such as eddy-driven advection, [7] sluggish ventilation, [8] increases in ocean stratification, and increases in ocean temperature which reduces oxygen solubility.