enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  4. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2]

  5. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    Start with a real number y in the half-open interval [1, 2). If y = 1, then the algorithm is done, and the fractional part is zero. Otherwise, square y repeatedly until the result z lies in the interval [2, 4). Let m be the number of squarings needed. That is, z = y 2 m with m chosen such that z is in [2, 4).

  6. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  7. Iterated logarithm - Wikipedia

    en.wikipedia.org/wiki/Iterated_logarithm

    Figure 1. Demonstrating log* 4 = 2 for the base-e iterated logarithm. The value of the iterated logarithm can be found by "zig-zagging" on the curve y = log b (x) from the input n, to the interval [0,1]. In this case, b = e. The zig-zagging entails starting from the point (n, 0) and iteratively moving to (n, log b (n) ), to (0, log b (n) ), to ...

  8. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    In mathematics, for given real numbers a and b, the logarithm log b a is a number x such that b x = a.Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a.

  9. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Example: consider the following differential equation (Kummer's equation with a = 1 and b = 2): ″ + ′ = The roots of the indicial equation are −1 and 0. Two independent solutions are 1 / z {\displaystyle 1/z} and e z / z , {\displaystyle e^{z}/z,} so we see that the logarithm does not appear in any solution.