enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    DNA replication: The double helix is 'unzipped' and unwound, then each separated strand (turquoise) acts as a template for replicating a new partner strand (green). Nucleotides (bases) are matched to synthesize the new partner strands into two new double helices.

  3. DNA unwinding element - Wikipedia

    en.wikipedia.org/wiki/DNA_unwinding_element

    A DNA unwinding element (DUE or DNAUE) is the initiation site for the opening of the double helix structure of the DNA at the origin of replication for DNA synthesis. [1] It is A-T rich and denatures easily due to its low helical stability, [ 2 ] which allows the single-strand region to be recognized by origin recognition complex .

  4. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    This leads to an issue due to the fact that DNA polymerase is only able to add to the 3' end of the DNA strand. The 3'-5' action of DNA polymerase along the parent strand leaves a short single-stranded DNA (ssDNA) region at the 3' end of the parent strand when the Okazaki fragments have been repaired. Since replication occurs in opposite ...

  5. Eukaryotic transcription - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_transcription

    Double stranded DNA that enters from the front of the enzyme is unzipped to avail the template strand for RNA synthesis. For every DNA base pair separated by the advancing polymerase, one hybrid RNA:DNA base pair is immediately formed. DNA strands and nascent RNA chain exit from separate channels; the two DNA strands reunite at the trailing end ...

  6. Okazaki fragments - Wikipedia

    en.wikipedia.org/wiki/Okazaki_fragments

    Newly synthesized DNA, otherwise known as Okazaki fragments, are bound by DNA ligase, which forms a new strand of DNA. There are two strands that are created when DNA is synthesized. The leading strand is continuously synthesized and is elongated during this process to expose the template that is used for the lagging strand (Okazaki fragments).

  7. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    The orientation of the 3′ and 5′ carbons along the sugar-phosphate backbone confers directionality (sometimes called polarity) to each DNA strand. In a nucleic acid double helix, the direction of the nucleotides in one strand is opposite to their direction in the other strand: the strands are antiparallel. The asymmetric ends of DNA strands ...

  8. Semiconservative replication - Wikipedia

    en.wikipedia.org/wiki/Semiconservative_replication

    As the DNA double helix is unwound by helicase, replication occurs separately on each template strand in antiparallel directions. This process is known as semi-conservative replication because two copies of the original DNA molecule are produced, each copy conserving (replicating) the information from one half of the original DNA molecule.

  9. Coding strand - Wikipedia

    en.wikipedia.org/wiki/Coding_strand

    By convention, the coding strand is the strand used when displaying a DNA sequence. It is presented in the 5' to 3' direction. Wherever a gene exists on a DNA molecule, one strand is the coding strand (or sense strand), and the other is the noncoding strand (also called the antisense strand, [3] anticoding strand, template strand or transcribed ...