Search results
Results from the WOW.Com Content Network
For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1. If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0.
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0, a mathematical truth. But the same substitution applied to the original equation results in x/6 + 0/0 = 1, which is mathematically meaningless.
For example, let a denote a multiplicative generator of the group of units of F 4, the Galois field of order four (thus a and a + 1 are roots of x 2 + x + 1 over F 4. Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits ...
f(x) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n, where a n ≠ 0 and n ≥ 2 is a continuous non-linear curve. A non-constant polynomial function tends to infinity when the variable increases indefinitely (in absolute value ).
In mathematics, an extraneous solution (or spurious solution) is one which emerges from the process of solving a problem but is not a valid solution to it. [1] A missing solution is a valid one which is lost during the solution process.
The multiplicative identity of R[x] is the polynomial x 0; that is, x 0 times any polynomial p(x) is just p(x). [2] Also, polynomials can be evaluated by specializing x to a real number. More precisely, for any given real number r, there is a unique unital R-algebra homomorphism ev r : R[x] → R such that ev r (x) = r. Because ev r is unital ...
Thus solving P(x) = 0 is reduced to the simpler problems of solving Q(x) = 0 and R(x) = 0. Conversely, the factor theorem asserts that, if r is a root of P(x) = 0, then P(x) may be factored as = (), where Q(x) is the quotient of Euclidean division of P(x) = 0 by the linear (degree one) factor x – r. If the coefficients of P(x) are real or ...
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...