Ad
related to: how to calculate transistor
Search results
Results from the WOW.Com Content Network
The g m of bipolar small-signal transistors varies widely, being proportional to the collector current. It has a typical range of 1 to 400 mS. The input voltage change is applied between the base/emitter and the output is the change in collector current flowing between the collector/emitter with a constant collector/emitter voltage.
The term is often used when describing field effect transistors, which rely on an electrically insulating pad of material between a gate and a doped semiconducting region. Device performance has typically been improved by reducing the thickness of a silicon oxide insulating pad.
In the case of a nonlinear device, such as a transistor, the term "output impedance" usually refers to the effect upon a small-amplitude signal, and will vary with the bias point of the transistor, that is, with the direct current (DC) and voltage applied to the device.
Overdrive voltage, usually abbreviated as V OV, is typically referred to in the context of MOSFET transistors.The overdrive voltage is defined as the voltage between transistor gate and source (V GS) in excess of the threshold voltage (V TH) where V TH is defined as the minimum voltage required between gate and source to turn the transistor on (allow it to conduct electricity).
The intersections of the load line with the transistor characteristic curves represent the circuit-constrained values of I C and V CE at different base currents. [2] If the transistor could pass all the current available, with no voltage dropped across it, the collector current would be the supply voltage V CC over R L. This is the point where ...
In textbooks, channel length modulation in active mode usually is described using the Shichman–Hodges model, accurate only for old technology: [2] where = drain current, ′ = technology parameter sometimes called the transconductance coefficient, W, L = MOSFET width and length, = gate-to-source voltage, =threshold voltage, = drain-to-source voltage, =, and λ = channel-length modulation ...
The subthreshold slope is a feature of a MOSFET's current–voltage characteristic.. In the subthreshold region, the drain current behaviour—though being controlled by the gate terminal—is similar to the exponentially decreasing current of a forward biased diode.
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
Ad
related to: how to calculate transistor