Search results
Results from the WOW.Com Content Network
Archaea were initially classified as bacteria, receiving the name archaebacteria (/ ˌ ɑːr k i b æ k ˈ t ɪər i ə /, in the Archaebacteria kingdom), but this term has fallen out of use. [5] Archaeal cells have unique properties separating them from Bacteria and Eukaryota. Archaea are further divided into multiple recognized phyla.
Euryarchaeota (from Ancient Greek εὐρύς eurús, "broad, wide") is a kingdom of archaea. [3] Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines; halobacteria, which survive extreme concentrations of salt; and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122 °C.
The two-domain system is a biological classification by which all organisms in the tree of life are classified into two domains, Bacteria and Archaea. [1] [2] [3] It emerged from development of knowledge of archaea diversity and challenges the widely accepted three-domain system that classifies life into Bacteria, Archaea, and Eukarya. [4]
This article lists the genera of the Archaea. The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [1] and National Center for Biotechnology Information (NCBI). [2] However, in the List provided below, GTDB has precedence unless otherwise noted.
The three-domain system adds a level of classification (the domains) "above" the kingdoms present in the previously used five- or six-kingdom systems.This classification system recognizes the fundamental divide between the two prokaryotic groups, insofar as Archaea appear to be more closely related to eukaryotes than they are to other prokaryotes – bacteria-like organisms with no cell nucleus.
The two-empire system or superdomain system, proposed by Mayr (1998), with top-level groupings of Prokaryota (or Monera) and Eukaryota. [11] [12] The eocyte hypothesis, proposed by Lake et al. (1984), [13] which posits two domains, Bacteria and Archaea, with Eukaryota included as a subordinate clade branching from Archaea. [14] [13] [15]
Salt-tolerant archaea (the Haloarchaea) use sunlight as an energy source, and other species of archaea fix carbon; however, unlike plants and cyanobacteria, no known species of archaea does both. Archaea reproduce asexually by binary fission , fragmentation , or budding ; unlike bacteria and eukaryotes, no known species forms spores .
A thermoacidophile is an extremophilic microorganism that is both thermophilic and acidophilic; i.e., it can grow under conditions of high temperature and low pH. [1] The large majority of thermoacidophiles are archaea (particularly the Thermoproteota and "Euryarchaeota") or bacteria, though occasional eukaryotic examples have been reported.