enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient:

  3. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  4. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    = is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:

  5. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    For a single damped mass-spring system, the Q factor represents the effect of simplified viscous damping or drag, where the damping force or drag force is proportional to velocity. The formula for the Q factor is: Q = M k D , {\displaystyle Q={\frac {\sqrt {Mk}}{D}},\,} where M is the mass, k is the spring constant, and D is the damping ...

  6. Vibration - Wikipedia

    en.wikipedia.org/wiki/Vibration

    The value that the damping coefficient must reach for critical damping in the mass-spring-damper model is: =. To characterize the amount of damping in a system a ratio called the damping ratio (also known as damping factor and % critical damping) is used. This damping ratio is just a ratio of the actual damping over the amount of damping ...

  7. Damping factor - Wikipedia

    en.wikipedia.org/wiki/Damping_factor

    The calculations suggested that a damping factor in excess of 50 will not lead to audible improvements, all other things being equal. [ 4 ] For audio power amplifiers employing some global negative feedback, this source impedance Z S {\displaystyle Z_{\mathrm {S} }} is generally smaller than 0.1 Ω , [ 6 ] which from the point of view of the ...

  8. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    Lines of constant damping ratio can be drawn radially from the origin and lines of constant natural frequency can be drawn as arccosine whose center points coincide with the origin. By selecting a point along the root locus that coincides with a desired damping ratio and natural frequency, a gain K can be calculated and implemented in the ...

  9. Overshoot (signal) - Wikipedia

    en.wikipedia.org/wiki/Overshoot_(signal)

    If a kernel is non-negative, such as for a Gaussian kernel, then the value of the filtered signal will be a convex combination of the input values (the coefficients (the kernel) integrate to 1, and are non-negative), and will thus fall between the minimum and maximum of the input signal – it will not undershoot or overshoot.