enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2]

  3. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  4. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    Gradient-based one-side sampling (GOSS) is a method that leverages the fact that there is no native weight for data instance in GBDT. Since data instances with different gradients play different roles in the computation of information gain, the instances with larger gradients will contribute more to the information gain.

  5. XGBoost - Wikipedia

    en.wikipedia.org/wiki/XGBoost

    It works on Linux, Microsoft Windows, [7] and macOS. [8] From the project description, it aims to provide a "Scalable, Portable and Distributed Gradient Boosting (GBM, GBRT, GBDT) Library". It runs on a single machine, as well as the distributed processing frameworks Apache Hadoop , Apache Spark , Apache Flink , and Dask .

  6. Weka (software) - Wikipedia

    en.wikipedia.org/wiki/Weka_(software)

    In version 3.7.2, a package manager was added to allow the easier installation of extension packages. [6] Some functionality that used to be included with Weka prior to this version has since been moved into such extension packages, but this change also makes it easier for others to contribute extensions to Weka and to maintain the software, as this modular architecture allows independent ...

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    The MLP consists of three or more layers (an input and an output layer with one or more hidden layers) of nonlinearly-activating nodes. Since MLPs are fully connected, each node in one layer connects with a certain weight w i j {\displaystyle w_{ij}} to every node in the following layer.

  9. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    In a neural network, batch normalization is achieved through a normalization step that fixes the means and variances of each layer's inputs. Ideally, the normalization would be conducted over the entire training set, but to use this step jointly with stochastic optimization methods, it is impractical to use the global information.