Search results
Results from the WOW.Com Content Network
The following is a list of integrals (antiderivative functions) of irrational functions. For a complete list of integral functions, see lists of integrals. Throughout this article the constant of integration is omitted for brevity.
The forms below normally assume the Cauchy principal value around a singularity in the value of C but this is in general, not necessary. For instance in ∫ 1 x d x = ln | x | + C {\displaystyle \int {1 \over x}\,dx=\ln \left|x\right|+C} there is a singularity at 0 and the antiderivative becomes infinite there.
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.
Integrands of the form x m (a + b x n + c x 2n) p when b 2 − 4 a c = 0 [ edit ] The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.
The problem for examination is evaluation of an integral of the form (,) , where D is some two-dimensional area in the xy–plane.For some functions f straightforward integration is feasible, but where that is not true, the integral can sometimes be reduced to simpler form by changing the order of integration.