enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released. A nuclear fusion process that produces atomic nuclei lighter than iron-56 or nickel-62 will generally release energy.

  3. The Hope and Hype of Fusion Energy, Explained - AOL

    www.aol.com/news/hope-hype-fusion-energy...

    Advances in the potential energy source may not be about electricity, at least at first.

  4. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    Hydrogen fusion (nuclear fusion of four protons to form a helium-4 nucleus [20]) is the dominant process that generates energy in the cores of main-sequence stars. It is also called "hydrogen burning", which should not be confused with the chemical combustion of hydrogen in an oxidizing atmosphere.

  5. Proton–proton chain - Wikipedia

    en.wikipedia.org/wiki/Proton–proton_chain

    The total energy yield of one whole chain is 26.73 MeV. Energy released as gamma rays will interact with electrons and protons and heat the interior of the Sun. Also kinetic energy of fusion products (e.g. of the two protons and the 4 2 He from the p–p I reaction) adds energy to the plasma in the Sun.

  6. Fusion power - Wikipedia

    en.wikipedia.org/wiki/Fusion_power

    The Sun, like other stars, is a natural fusion reactor, where stellar nucleosynthesis transforms lighter elements into heavier elements with the release of energy. Binding energy for different atomic nuclei.

  7. Why the nuclear fusion breakthrough won't prevent ... - AOL

    www.aol.com/news/why-nuclear-fusion-breakthrough...

    Nuclear fusion is when two light atomic nuclei combine to form a single heavier one and release massive amounts of energy. It’s essentially the more powerful inverse of nuclear fission, a ...

  8. Carbon-burning process - Wikipedia

    en.wikipedia.org/wiki/Carbon-burning_process

    Fusion processes are very sensitive to temperature so the star can produce more energy to retain hydrostatic equilibrium, at the cost of burning through successive nuclear fuels ever more rapidly. Fusion produces less energy per unit mass as the fuel nuclei get heavier, and the core of the star contracts and heats up when switching from one ...

  9. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.