Search results
Results from the WOW.Com Content Network
Data from nine subjects collected using P300-based brain-computer interface for disabled subjects. Split into four sessions for each subject. MATLAB code given. 1,224 Text Classification 2008 [263] [264] U. Hoffman et al. Heart Disease Data Set Attributed of patients with and without heart disease.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Data and information visualization (data viz/vis or info viz/vis) [2] is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representations of a large amount [3] of complex quantitative and qualitative data and information with the help of static, dynamic or interactive visual items.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
The four datasets composing Anscombe's quartet. All four sets have identical statistical parameters, but the graphs show them to be considerably different. Anscombe's quartet comprises four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphed.
In statistics, multiple correspondence analysis (MCA) is a data analysis technique for nominal categorical data, used to detect and represent underlying structures in a data set. It does this by representing data as points in a low-dimensional Euclidean space. The procedure thus appears to be the counterpart of principal component analysis for ...
Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution. [1] Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population.
In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging.