Search results
Results from the WOW.Com Content Network
The pound-force is equal to the gravitational force exerted on a mass of one avoirdupois pound on the surface of Earth.Since the 18th century, the unit has been used in low-precision measurements, for which small changes in Earth's gravity (which varies from equator to pole by up to half a percent) can safely be neglected.
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
newton dyne kilogram-force, kilopond pound-force poundal; 1 N : ≡ 1 kg⋅m/s 2 = 10 5 dyn ≈ 0.101 97 kp: ≈ 0.224 81 lb F: ≈ 7.2330 pdl: 1 dyn = 10 −5 N ≡ 1 g⋅cm/s 2
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
inch-pound force: in lbf ≡ g 0 × 1 lb × 1 in = 0.112 984 829 027 6167 J: joule (SI unit) J The work done when a force of one newton moves the point of its application a distance of one metre in the direction of the force. [32] = 1 J = 1 m⋅N = 1 kg⋅m 2 /s 2 = 1 C⋅V = 1 W⋅s kilocalorie; large calorie: kcal; Cal ≡ 1000 cal IT = 4. ...
Force 1 poundal = force to accelerate 1 pound mass 1 foot/second/second ≈ 0.138 newtons. 1 kip = 1000 lbf ≈ 4.44822 kN; Energy 1 foot-pound ≈ 1.356 J; 1 British thermal unit (Btu) ≈ 1.055 kJ (1,054–1,060 J, depending on which of several definitions of BTU is used)
Mass is (among other properties) an inertial property; that is, the tendency of an object to remain at constant velocity unless acted upon by an outside force. Under Sir Isaac Newton's 338-year-old laws of motion and an important formula that sprang from his work, F = ma, an object with a mass, m, of one kilogram accelerates, a, at one meter ...