Search results
Results from the WOW.Com Content Network
The NOR gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output (0) results.
A single NOR gate. A NOR gate or a NOT OR gate is a logic gate which gives a positive output only when both inputs are negative.. Like NAND gates, NOR gates are so-called "universal gates" that can be combined to form any other kind of logic gate.
In Boolean logic, logical NOR, [1] non-disjunction, or joint denial [1] is a truth-functional operator which produces a result that is the negation of logical or.That is, a sentence of the form (p NOR q) is true precisely when neither p nor q is true—i.e. when both p and q are false.
A NAND gate is equivalent to an OR gate with negated inputs, and a NOR gate is equivalent to an AND gate with negated inputs. This leads to an alternative set of symbols for basic gates that use the opposite core symbol (AND or OR) but with the inputs and outputs negated. Use of these alternative symbols can make logic circuit diagrams much ...
Sometimes precedence between conjunction and disjunction is unspecified requiring to provide it explicitly in given formula with parentheses. The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
The XNOR gate (sometimes ENOR, EXNOR, NXOR, XAND and pronounced as Exclusive NOR) is a digital logic gate whose function is the logical complement of the Exclusive OR gate. [1] It is equivalent to the logical connective ( ↔ {\displaystyle \leftrightarrow } ) from mathematical logic , also known as the material biconditional.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]