enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    If nonempty f: X → Y is injective, construct a left inverse g: Y → X as follows: for all y ∈ Y, if y is in the image of f, then there exists xX such that f(x) = y. Let g(y) = x; this definition is unique because f is injective. Otherwise, let g(y) be an arbitrary element of X. For all xX, f(x) is in the image of f.

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    def f (x): return x ** 2-2 # f(x) = x^2 - 2 def f_prime (x): return 2 * x # f'(x) = 2x def newtons_method (x0, f, f_prime, tolerance, epsilon, max_iterations): """Newton's method Args: x0: The initial guess f: The function whose root we are trying to find f_prime: The derivative of the function tolerance: Stop when iterations change by less ...

  4. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  5. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    The expression (,) (read: "the map taking x to f of x comma t nought") represents this new function with just one argument, whereas the expression f(x 0, t 0) refers to the value of the function f at the point (x 0, t 0).

  6. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Part I of the theorem then says: if f is any Lebesgue integrable function on [a, b] and x 0 is a number in [a, b] such that f is continuous at x 0, then = is differentiable for x = x 0 with F′(x 0) = f(x 0). We can relax the conditions on f still further and suppose that it is merely locally integrable.

  7. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  8. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  9. Intermediate value theorem - Wikipedia

    en.wikipedia.org/wiki/Intermediate_value_theorem

    Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.