enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The de Broglie relation, [10] [11] [12] also known as de Broglie's momentum–wavelength relation, [4] generalizes the Planck relation to matter waves. Louis de Broglie argued that if particles had a wave nature, the relation E = hν would also apply to them, and postulated that particles would have a wavelength equal to λ = ⁠ h / p ⁠.

  4. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    In 1923, Louis de Broglie generalized the Planck–Einstein relation by postulating that the Planck constant represents the proportionality between the momentum and the quantum wavelength of not just the photon, but the quantum wavelength of any particle. This was confirmed by experiments soon afterward.

  5. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    The De Broglie relations give the relation between them: ... λ = wavelength of emitted photon, during electronic transition from E i to E j ...

  6. Wave–particle duality - Wikipedia

    en.wikipedia.org/wiki/Wave–particle_duality

    In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.

  7. Thermal de Broglie wavelength - Wikipedia

    en.wikipedia.org/wiki/Thermal_de_Broglie_wavelength

    On the other hand, when the thermal de Broglie wavelength is on the order of or larger than the interparticle distance, quantum effects will dominate and the gas must be treated as a Fermi gas or a Bose gas, depending on the nature of the gas particles. The critical temperature is the transition point between these two regimes, and at this ...

  8. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    Top: If wavelength λ is unknown, so are momentum p, wave-vector k and energy E (de Broglie relations). As the particle is more localized in position space, Δx is smaller than for Δp x. Bottom: If λ is known, so are p, k, and E. As the particle is more localized in momentum space, Δp is smaller than for Δx.

  9. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    Nowadays, this wavelength is called the de Broglie wavelength. For example, the electrons in a CRT display have a De Broglie wavelength of about 10 −13 m. To prevent the wave function for such a particle being spread over all space, de Broglie proposed using wave packets to represent particles that are localized in space. [25]