Search results
Results from the WOW.Com Content Network
L-Ribose Fischer Projection. Ribose is a simple sugar and carbohydrate with molecular formula C 5 H 10 O 5 and the linear-form composition H−(C=O)−(CHOH) 4 −H. The naturally occurring form, d-ribose, is a component of the ribonucleotides from which RNA is built, and so this compound is necessary for coding, decoding, regulation and expression of genes.
While the sugar-phosphate "backbone" of DNA contains deoxyribose, RNA contains ribose instead. [6] Ribose has a hydroxyl group attached to the pentose ring in the 2' position, whereas deoxyribose does not. The hydroxyl groups in the ribose backbone make RNA more chemically labile than DNA by lowering the activation energy of hydrolysis.
Nucleic acid types differ in the structure of the sugar in their nucleotides–DNA contains 2'-deoxyribose while RNA contains ribose (where the only difference is the presence of a hydroxyl group). Also, the nucleobases found in the two nucleic acid types are different: adenine , cytosine , and guanine are found in both RNA and DNA, while ...
5-carbon sugar which is called deoxyribose (found in DNA) and ribose (found in RNA). One or more phosphate groups. [1] The nitrogen bases adenine and guanine are purine in structure and form a glycosidic bond between their 9 nitrogen and the 1' -OH group of the deoxyribose.
The major difference between RNA and DNA is the presence of a hydroxyl group at the 2'-position of the ribose sugar in RNA (illustration, right). [21] This group makes the molecule less stable because, when not constrained in a double helix, the 2' hydroxyl can chemically attack the adjacent phosphodiester bond to cleave the phosphodiester ...
A ribonucleotide tri-phosphate (rNTP) is composed of a ribose sugar, 3 phosphate groups attached via diester bonds to the 5' oxygen on the ribose and a nitrogenous base attached to the 1' carbon on the ribose. rNTP's are also referred to as NTPs while the deoxyribose version is referred to as dNTPs.
Both types of pentoses in DNA and RNA are in their β-furanose (closed five-membered ring) form and they define the identity of a nucleic acid. DNA is defined by containing 2'-deoxy-ribose nucleic acid while RNA is defined by containing ribose nucleic acid. [1] In some occasions, DNA and RNA may contain some minor bases.
In a single strand of DNA or RNA, the chemical convention of naming carbon atoms in the nucleotide pentose-sugar-ring means that there will be a 5′ end (usually pronounced "five-prime end"), which frequently contains a phosphate group attached to the 5′ carbon of the ribose ring, and a 3′ end (usually pronounced "three-prime end"), which ...