Search results
Results from the WOW.Com Content Network
A higher expansion rate would imply a smaller characteristic size of CMB fluctuations, and vice versa. The Planck collaboration measured the expansion rate this way and determined H 0 = 67.4 ± 0.5 (km/s)/Mpc. [24] There is a disagreement between this measurement and the supernova-based measurements, known as the Hubble tension.
The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago. [ 8 ] [ notes 1 ] Within the framework of general relativity , an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ , equivalent to the presence of ...
The universe's expansion rate, a figure called the Hubble constant, is measured in kilometers per second per megaparsec, a distance equal to 3.26 million light-years.
The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [8] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3% (2018 estimate) of the mass–energy density ...
Based on the 2013 data, the universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. On 5 February 2015, new data was released by the Planck mission, according to which the age of the universe is 13.799 ± 0.021 billion years and the Hubble constant is 67.74 ± 0.46 (km/s)/Mpc. [36]
The International Astronomical Union uses the term "age of the universe" to mean the duration of the Lambda-CDM expansion, [13] or equivalently, the time elapsed within the currently observable universe since the Big Bang. The expansion rate at any time is called the Hubble parameter ˙, which is modeled as ˙ = + + + (), where are density ...
In using Hubble's law to determine distances, only the velocity due to the expansion of the universe can be used. Since gravitationally interacting galaxies move relative to each other independent of the expansion of the universe, [43] these relative velocities, called peculiar velocities, need to be accounted for in the application of Hubble's ...
The second equation states that both the energy density and the pressure cause the expansion rate of the universe ˙ to decrease, i.e., both cause a deceleration in the expansion of the universe. This is a consequence of gravitation , with pressure playing a similar role to that of energy (or mass) density, according to the principles of ...