enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expansion of the universe - Wikipedia

    en.wikipedia.org/wiki/Expansion_of_the_universe

    A higher expansion rate would imply a smaller characteristic size of CMB fluctuations, and vice versa. The Planck collaboration measured the expansion rate this way and determined H 0 = 67.4 ± 0.5 (km/s)/Mpc. [24] There is a disagreement between this measurement and the supernova-based measurements, known as the Hubble tension.

  3. Accelerating expansion of the universe - Wikipedia

    en.wikipedia.org/wiki/Accelerating_expansion_of...

    The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago. [ 8 ] [ notes 1 ] Within the framework of general relativity , an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ , equivalent to the presence of ...

  4. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    In using Hubble's law to determine distances, only the velocity due to the expansion of the universe can be used. Since gravitationally interacting galaxies move relative to each other independent of the expansion of the universe, [43] these relative velocities, called peculiar velocities, need to be accounted for in the application of Hubble's ...

  5. Lambda-CDM model - Wikipedia

    en.wikipedia.org/wiki/Lambda-CDM_model

    The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [7] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3% (2018 estimate) of the mass–energy density ...

  6. Age of the universe - Wikipedia

    en.wikipedia.org/wiki/Age_of_the_universe

    The International Astronomical Union uses the term "age of the universe" to mean the duration of the Lambda-CDM expansion, [13] or equivalently, the time elapsed within the currently observable universe since the Big Bang. The expansion rate at any time is called the Hubble parameter ˙, which is modeled as ˙ = + + + (), where are density ...

  7. Recessional velocity - Wikipedia

    en.wikipedia.org/wiki/Recessional_velocity

    Recessional velocity is the rate at which an extragalactic astronomical object recedes (becomes more distant) from an observer as a result of the expansion of the universe. [1] It can be measured by observing the wavelength shifts of spectral lines emitted by the object, known as the object's cosmological redshift .

  8. Friedmann–Lemaître–Robertson–Walker metric - Wikipedia

    en.wikipedia.org/wiki/Friedmann–Lemaître...

    The second equation states that both the energy density and the pressure cause the expansion rate of the universe ˙ to decrease, i.e., both cause a deceleration in the expansion of the universe. This is a consequence of gravitation , with pressure playing a similar role to that of energy (or mass) density, according to the principles of ...

  9. Big Rip - Wikipedia

    en.wikipedia.org/wiki/Big_Rip

    In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase.