Search results
Results from the WOW.Com Content Network
controls the amount of non-linearity in the restoring force; if =, the Duffing equation describes a damped and driven simple harmonic oscillator, γ {\displaystyle \gamma } is the amplitude of the periodic driving force; if γ = 0 {\displaystyle \gamma =0} the system is without a driving force, and
The above discussion focuses on a pendulum bob only acted upon by the force of gravity. Suppose a damping force, e.g. air resistance, as well as a sinusoidal driving force acts on the body. This system is a damped, driven oscillator, and is chaotic. Equation (1) can be written as
A harmonograph creates its figures using the movements of damped pendulums. The movement of a damped pendulum is described by the equation = (+),in which represents frequency, represents phase, represents amplitude, represents damping and represents time.
In physics, complex harmonic motion is a complicated realm based on the simple harmonic motion.The word "complex" refers to different situations. Unlike simple harmonic motion, which is regardless of air resistance, friction, etc., complex harmonic motion often has additional forces to dissipate the initial energy and lessen the speed and amplitude of an oscillation until the energy of the ...
The damping ratio is a system parameter, denoted by ζ ("zeta"), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1). The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering , chemical engineering , mechanical ...
"Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.
Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:
Phase portrait of damped oscillator, with increasing damping strength. The equation of motion is x ¨ + 2 γ x ˙ + ω 2 x = 0. {\displaystyle {\ddot {x}}+2\gamma {\dot {x}}+\omega ^{2}x=0.} In mathematics , a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane .