Search results
Results from the WOW.Com Content Network
The first postmitotic cells must leave the stem cell niche and migrate outward to form the preplate, which is destined to become Cajal–Retzius cells and subplate neurons. These cells do so by somal translocation. Neurons migrating with this mode of locomotion are bipolar and attach the leading edge of the process to the pia.
These neurons re-enter the cell cycle as they travel to the ganglion cell layer when they are activated by p75NTR. These neurons are unable to enter mitosis and are stuck in a 4C DNA content state. Cell cycle re-entry by p75NTR is not dependent on Cdk4/6 (Morillo et al., 2012) and, therefore, differs from other cell types that re-enter the cell ...
During this time, the walls of the neural tube contain neural stem cells, which drive brain growth as they divide many times. Gradually some of the cells stop dividing and differentiate into neurons and glial cells, which are the main cellular components of the CNS. [2]
Fully differentiated neurons are permanently postmitotic [10] however, stem cells present in the adult brain may regenerate functional neurons throughout the life of an organism (see neurogenesis). Astrocytes are star-shaped glial cells that have been observed to turn into neurons by virtue of their stem cell-like characteristic of pluripotency .
Brain cells make up the functional tissue of the brain. The rest of the brain tissue is the structural stroma that includes connective tissue such as the meninges, blood vessels, and ducts. The two main types of cells in the brain are neurons, also known as nerve cells, and glial cells, also known as neuroglia. [1]
While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural network. In neuroscience , a biological neural network is a physical structure found in brains and complex nervous systems – a population of nerve cells connected by synapses .
Other unipolar neurons found in invertebrates do not even have distinguishing processes such as dendrites. Moreover, the distinctions based on function between neurons and other cells such as cardiac and muscle cells are not helpful. Thus, the fundamental difference between a neuron and a nonneuronal cell is a matter of degree.
A study reported that newly made cells in the adult mouse hippocampus can display passive membrane properties, action potentials and synaptic inputs similar to the ones found in mature dentate granule cells. These findings suggested that these newly made cells can mature into more practical and useful neurons in the adult mammalian brain. [33]