Search results
Results from the WOW.Com Content Network
Substitutional solid solution strengthening occurs when the solute atom is large enough that it can replace solvent atoms in their lattice positions. Some alloying elements are only soluble in small amounts, whereas some solvent and solute pairs form a solution over the whole range of binary compositions.
Solute atoms should have a smaller radius than 59% of the radius of solvent atoms. [5] [6] The solute and solvent should have similar electronegativity. [7] Valency factor: two elements should have the same valence. The greater the difference in valence between solute and solvent atoms, the lower the solubility.
For this strengthening mechanism, solute atoms of one element are added to another, resulting in either substitutional or interstitial point defects in the crystal (see Figure on the right). The solute atoms cause lattice distortions that impede dislocation motion, increasing the yield stress of the material. Solute atoms have stress fields ...
The IUPAC definition of a solid solution is a "solid in which components are compatible and form a unique phase". [3]The definition "crystal containing a second constituent which fits into and is distributed in the lattice of the host crystal" given in refs., [4] [5] is not general and, thus, is not recommended.
The theory of stress fields can be applied to various strengthening mechanisms for materials. Stress fields can be created by adding different sized atoms to the lattice (solute strengthening). If a smaller atom is added to the lattice, a tensile stress field is created. The atomic bonds are longer due to the smaller radius of the solute atom.
The glucose transporter (GLUTs) is a type of uniporter responsible for the facilitated diffusion of glucose molecules across cell membranes. [9] Glucose is a vital energy source for most living cells, however, due to its large size, it cannot freely move through the cell membrane. [16]
Exercise for strengthening of the cervical, thoracic and lumbar spine [ edit ] The cervical , thoracic and lumbar spine is composed of a total of 24 presacral vertebrae and their main functions are to protect the spinal cord, provide an attachment site for many muscles of the body.
This also means that muscle cells are able to take in more glucose as its intracellular concentrations decrease. In order to increase glucose levels in the cell, GLUT4 is the primary transporter used in this facilitated diffusion. [15] Although muscle contractions function in a similar way and also induce the translocation of GLUT4 into the ...