Ad
related to: calculate volume of odd shape and line example problems with solutions freegenerationgenius.com has been visited by 10K+ users in the past month
- Grades 6-8 Math Lessons
Get instant access to hours of fun
standards-based 6-8 videos & more.
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- K-8 Math Videos & Lessons
Used in 20,000 Schools
Loved by Students & Teachers
- Loved by Teachers
Check out some of the great
feedback from teachers & parents.
- Grades 6-8 Math Lessons
Search results
Results from the WOW.Com Content Network
A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.
Solutions to the illumination problem by George W. Tokarsky (26 sides) and David Castro (24 sides) This problem was also solved for polygonal rooms by George Tokarsky in 1995 for 2 and 3 dimensions, which showed that there exists an unilluminable polygonal 26-sided room with a "dark spot" which is not illuminated from another point in the room ...
The fact that the volume of any pyramid, regardless of the shape of the base, including cones (circular base), is (1/3) × base × height, can be established by Cavalieri's principle if one knows only that it is true in one case. One may initially establish it in a single case by partitioning the interior of a triangular prism into three ...
The main result of the paper is a randomized algorithm for finding an approximation to the volume of a convex body in -dimensional Euclidean space by assuming the existence of a membership oracle. The algorithm takes time bounded by a polynomial in n {\displaystyle n} , the dimension of K {\displaystyle K} and 1 / ε {\displaystyle 1 ...
The fold-and-cut problem asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained. A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements.
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
These shapes were conjectured by Bonnesen & Fenchel (1934) to have the minimum volume among all shapes with the same constant width, but this conjecture remains unsolved. Among all surfaces of revolution with the same constant width, the one with minimum volume is the shape swept out by a Reuleaux triangle rotating about one of its axes of ...
In computational geometry, the point-in-polygon (PIP) problem asks whether a given point in the plane lies inside, outside, or on the boundary of a polygon. It is a special case of point location problems and finds applications in areas that deal with processing geometrical data, such as computer graphics , computer vision , geographic ...
Ad
related to: calculate volume of odd shape and line example problems with solutions freegenerationgenius.com has been visited by 10K+ users in the past month