enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pappus configuration - Wikipedia

    en.wikipedia.org/wiki/Pappus_configuration

    The Pappus graph. The Levi graph of the Pappus configuration is known as the Pappus graph.It is a bipartite symmetric cubic graph with 18 vertices and 27 edges. [3]Adding three more parallel lines to the Pappus configuration, through each triple of points that are not already connected by lines of the configuration, produces the Hesse configuration.

  3. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    In projective geometry, Pascal's theorem (also known as the hexagrammum mysticum theorem, Latin for mystical hexagram) states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined by line segments in any order to form a hexagon, then the three pairs of ...

  4. Triple bar - Wikipedia

    en.wikipedia.org/wiki/Triple_bar

    The triple bar character in Unicode is code point U+2261 ≡ IDENTICAL TO (≡, ≡). [1] The closely related code point U+2262 ≢ NOT IDENTICAL TO (≢, ≢) is the same symbol with a slash through it, indicating the negation of its mathematical meaning.

  5. Hamburger button - Wikipedia

    en.wikipedia.org/wiki/Hamburger_button

    The icon consists of three parallel horizontal lines, intended to resemble the lines of text in a small menu. [ 7 ] [ 12 ] To further reduce screen it may be narrowed to three vertically stacked dots ( ⋮ ), this has been called a kebab , meatball or falafel button , but still pops up a normal-looking menu.

  6. No-three-in-line problem - Wikipedia

    en.wikipedia.org/wiki/No-three-in-line_problem

    The no-three-in-line drawing of a complete graph is a special case of this result with =. [12] The no-three-in-line problem also has applications to another problem in discrete geometry, the Heilbronn triangle problem. In this problem, one must place points, anywhere in a unit square, not restricted to a grid. The goal of the placement is to ...

  7. Pappus's hexagon theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_hexagon_theorem

    The Pappus configuration is the configuration of 9 lines and 9 points that occurs in Pappus's theorem, with each line meeting 3 of the points and each point meeting 3 lines. In general, the Pappus line does not pass through the point of intersection of A B C {\displaystyle ABC} and a b c {\displaystyle abc} . [ 3 ]

  8. Nine dots puzzle - Wikipedia

    en.wikipedia.org/wiki/Nine_dots_puzzle

    The "nine dots" puzzle. The puzzle asks to link all nine dots using four straight lines or fewer, without lifting the pen. The nine dots puzzle is a mathematical puzzle whose task is to connect nine squarely arranged points with a pen by four (or fewer) straight lines without lifting the pen.

  9. Carnot's theorem (perpendiculars) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem...

    Carnot's theorem: if three perpendiculars on triangle sides intersect in a common point F, then blue area = red area. Carnot's theorem (named after Lazare Carnot) describes a necessary and sufficient condition for three lines that are perpendicular to the (extended) sides of a triangle having a common point of intersection.