enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. François Chollet - Wikipedia

    en.wikipedia.org/wiki/François_Chollet

    Chollet is the author of Xception: Deep Learning with Depthwise Separable Convolutions, [10] which is among the top ten most cited papers in CVPR proceedings at more than 18,000 citations. [11] Chollet is the author of the book Deep Learning with Python, [12] which sold over 100,000 copies, and the co-author with Joseph J. Allaire of Deep ...

  3. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Designed to enable fast experimentation with deep neural networks, Keras focuses on being user-friendly, modular, and extensible. It was developed as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System), [5] and its primary author and maintainer is François Chollet, a Google engineer

  4. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Python: Python: Only on Linux No Yes No Yes Yes Keras: François Chollet 2015 MIT license: Yes Linux, macOS, Windows: Python: Python, R: Only if using Theano as backend Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes [20] Yes Yes No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks ...

  5. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  6. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    Liulishuo, an online English learning platform, utilized TensorFlow to create an adaptive curriculum for each student. [79] TensorFlow was used to accurately assess a student's current abilities, and also helped decide the best future content to show based on those capabilities.

  7. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  8. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  9. Yann LeCun - Wikipedia

    en.wikipedia.org/wiki/Yann_LeCun

    Yann André Le Cun [1] (/ l ə ˈ k ʌ n / lə-KUN, French:; [2] usually spelled LeCun; [2] born 8 July 1960) is a French-American computer scientist working primarily in the fields of machine learning, computer vision, mobile robotics and computational neuroscience.