Search results
Results from the WOW.Com Content Network
Each problem takes a Boolean formula as input and the task is to compute the number of satisfying assignments. This can be further generalized by using larger domain sizes and attaching a weight to each satisfying assignment and computing the sum of these weights. It is known that any complex weighted #CSP problem is either in FP or #P-hard. [32]
All local search algorithms use a function that evaluates the quality of assignment, for example the number of constraints violated by the assignment. This amount is called the cost of the assignment. The aim of local search is that of finding an assignment of minimal cost, which is a solution if any exists.
In artificial intelligence and operations research, a Weighted Constraint Satisfaction Problem (WCSP), also known as Valued Constraint Satisfaction Problem (VCSP), is a generalization of a constraint satisfaction problem (CSP) where some of the constraints can be violated (according to a violation degree) and in which preferences among solutions can be expressed.
The current status of the CSP during the algorithm can be viewed as a directed graph, where the nodes are the variables of the problem, with edges or arcs between variables that are related by symmetric constraints, where each arc in the worklist represents a constraint that needs to be checked for consistency.
The constrained-optimization problem (COP) is a significant generalization of the classic constraint-satisfaction problem (CSP) model. [1] COP is a CSP that includes an objective function to be optimized. Many algorithms are used to handle the optimization part.
A continuous performance task, continuous performance test, or CPT, is any of several kinds of neuropsychological test that measures a person's sustained and selective attention. Sustained attention is the ability to maintain a consistent focus on some continuous activity or stimuli , and is associated with impulsivity .
A task-parallel model focuses on processes, or threads of execution. These processes will often be behaviourally distinct, which emphasises the need for communication. Task parallelism is a natural way to express message-passing communication. In Flynn's taxonomy, task parallelism is usually classified as MIMD/MPMD or MISD.
As a simple example, if a system is running code on a 2-processor system (CPUs "a" & "b") in a parallel environment and we wish to do tasks "A" and "B", it is possible to tell CPU "a" to do task "A" and CPU "b" to do task "B" simultaneously, thereby reducing the run time of the execution.