Search results
Results from the WOW.Com Content Network
The cryosphere is an umbrella term for those portions of Earth's surface where water is in solid form. This includes sea ice, ice on lakes or rivers, snow, glaciers, ice caps, ice sheets, and frozen ground (which includes permafrost). Thus, there is a overlap with the hydrosphere. The cryosphere is an integral part of the global climate system.
The five components of the climate system all interact. They are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. [1]: 1451 Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things).
The water cycle is powered from the energy emitted by the sun. This energy heats water in the ocean and seas. Water evaporates as water vapor into the air. Some ice and snow sublimates directly into water vapor. Evapotranspiration is water transpired from plants and evaporated from the soil. The water molecule H
The boundary of the region where ice could form in the early Solar System is known as the frost line (or snow line), and is located in the modern asteroid belt, between about 2.7 and 3.1 astronomical units (AU) from the Sun. [23] [24] It is therefore necessary that objects forming beyond the frost line–such as comets, trans-Neptunian objects ...
Articles relating to the cryosphere, an all-encompassing term for those portions of Earth's surface where water is in solid form, including sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice sheets, and frozen ground (which includes permafrost).
The composition of the ice will vary. For example, Earth's polar caps are mainly water ice, whereas Mars's polar ice caps are a mixture of solid carbon dioxide and water ice. Polar ice caps form because high-latitude regions receive less energy in the form of solar radiation from the Sun than equatorial regions, resulting in lower surface ...
Most water in Earth's atmosphere and crust comes from saline seawater, while fresh water accounts for nearly 1% of the total. The vast bulk of the water on Earth is saline or salt water, with an average salinity of 35‰ (or 3.5%, roughly equivalent to 34 grams of salts in 1 kg of seawater), though this varies slightly according to the amount of runoff received from surrounding land.
Over time, the planet cooled and formed a solid crust, eventually allowing liquid water to exist on the surface. Three to four billion years ago the Sun emitted only 70% of its current power. [5] Under the present atmospheric composition, this past solar luminosity would have been insufficient to prevent water from uniformly freezing.