Search results
Results from the WOW.Com Content Network
In practice, fish anatomy and fish physiology complement each other, the former dealing with the structure of a fish, its organs or component parts and how they are put together, such as might be observed on the dissecting table or under the microscope, and the latter dealing with how those components function together in living fish. The ...
Fish physiology is the scientific study of how the component parts of fish function together in the living fish. [2] It can be contrasted with fish anatomy, which is the study of the form or morphology of fishes. In practice, fish anatomy and physiology complement each other, the former dealing with the structure of a fish, its organs or ...
Afrikaans; Anarâškielâ; العربية; বাংলা; 閩南語 / Bân-lâm-gú; Български; Català; Čeština; Deutsch; Español; Esperanto; Euskara
Fish fall into two main groups: fish with bony internal skeletons and fish with cartilaginous internal skeletons. Fish anatomy and physiology generally includes a two-chambered heart, eyes adapted to seeing underwater, and a skin protected by scales and mucous. They typically breathe by extracting oxygen from water through gills.
Fish fins are distinctive anatomical features with varying structures among different clades: in ray-finned fish (Actinopterygii), fins are mainly composed of bony spines or rays covered by a thin stretch of scaleless skin; in lobe-finned fish (Sarcopterygii) such as coelacanths and lungfish, fins are short rays based around a muscular central ...
Fish vision shows adaptation to their visual environment, for example deep sea fishes have eyes suited to the dark environment. Fish and other aquatic animals live in a different light environment than terrestrial species. Water absorbs light so that with increasing depth the amount of light available decreases quickly.
Most male fish have two testes of similar size. In the case of sharks, the testes on the right side is usually larger [citation needed].The primitive jawless fish have only a single testis, located in the midline of the body, although even this forms from the fusion of paired structures in the embryo.
Chimaeras differ from other cartilagenous fish, having lost both the spiracle and the fifth gill slit. The remaining slits are covered by an operculum, developed from the septum of the gill arch in front of the first gill. [6] The shared trait of breathing via gills in bony fish and cartilaginous fish is a famous example of symplesiomorphy.