Search results
Results from the WOW.Com Content Network
Miscellanea. v. t. e. In mathematics, integrals of inverse functions can be computed by means of a formula that expresses the antiderivatives of the inverse of a continuous and invertible function , in terms of and an antiderivative of . This formula was published in 1905 by Charles-Ange Laisant. [1]
The graphs of antiderivatives of a given function are vertical translations of each other, with each graph's vertical location depending upon the value c. More generally, the power function has antiderivative if n ≠ −1, and if n = −1. In physics, the integration of acceleration yields velocity plus a constant.
This visualization also explains why integration by parts may help find the integral of an inverse function f−1 (x) when the integral of the function f (x) is known. Indeed, the functions x (y) and y (x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.
In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, [a] the other being differentiation. Integration was initially used to solve problems in mathematics and ...
In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function to indicate that the indefinite integral of (i.e., the set of all antiderivatives of ), on a connected domain, is only defined up to an additive constant. [1][2][3] This constant expresses an ambiguity inherent in the ...
Calculus. In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and can loosely be thought of as using the chain rule "backwards."
Nonelementary integral. In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2] This theorem also provides a basis for the ...
The integral of the secant function defines the Lambertian function, which is the inverse of the Gudermannian function: lam {\displaystyle \int _ {0}^ {\varphi }\sec t\,dt=\operatorname {lam} \varphi =\operatorname {gd} ^ {-1}\varphi .} These functions are encountered in the theory of map projections: the Mercator projection of a point on the ...