enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix chain multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_chain_multiplication

    For the example below, there are four sides: A, B, C and the final result ABC. A is a 10×30 matrix, B is a 30×5 matrix, C is a 5×60 matrix, and the final result is a 10×60 matrix. The regular polygon for this example is a 4-gon, i.e. a square: The matrix product AB is a 10x5 matrix and BC is a 30x60 matrix.

  3. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  4. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Examples of such matrices commonly arise from the discretization of 1D Poisson equation and natural cubic spline interpolation. Thomas' algorithm is not stable in general, but is so in several special cases, such as when the matrix is diagonally dominant (either by rows or columns) or symmetric positive definite ; [ 1 ] [ 2 ] for a more precise ...

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    For example, a matrix such that all entries of a row (or a column) are 0 does not have an inverse. If it exists, the inverse of a matrix A is denoted A −1, and, thus verifies = =. A matrix that has an inverse is an invertible matrix.

  7. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Matrix formulae to calculate rows and columns of LU factors by recursion are given in the remaining part of Banachiewicz's paper as Eq. (2.3) and (2.4) (see F90 code example). This paper by Banachiewicz contains both derivation of and factors of respectively non-symmetric and symmetric matrices. They are sometimes confused as later publications ...

  8. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, [1] or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. [2] A publication was not delivered before 1874 by ...

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]