enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    The enthalpy, entropy and Gibbs energy of activation are more correctly written as Δ ‡ H o, Δ ‡ S o and Δ ‡ G o respectively, where the o indicates a quantity evaluated between standard states. [11] [12] However, some authors omit the o in order to simplify the notation. [13] [14]

  3. Enthalpy–entropy chart - Wikipedia

    en.wikipedia.org/wiki/Enthalpyentropy_chart

    An enthalpyentropy chart, also known as the H–S chart or Mollier diagram, plots the total heat against entropy, [1] describing the enthalpy of a thermodynamic system. [2] A typical chart covers a pressure range of 0.01–1000 bar, and temperatures up to 800 degrees Celsius. [3] It shows enthalpy in terms of internal energy , pressure and ...

  4. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    Thermodynamics. In thermodynamics, entropy is a numerical quantity that shows that many physical processes can go in only one direction in time. For example, cream and coffee can be mixed together, but cannot be "unmixed"; a piece of wood can be burned, but cannot be "unburned". The word 'entropy' has entered popular usage to refer to a lack of ...

  5. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, Keq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, ΔrH⊖, for the process. The subscript means "reaction" and the superscript means "standard". It was proposed by Dutch chemist Jacobus Henricus van 't Hoff in 1884 in his book ...

  6. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The first law of thermodynamics states that: where and are infinitesimal amounts of heat supplied to the system by its surroundings and work done by the system on its surroundings, respectively. According to the second law of thermodynamics we have for a reversible process: Q {\displaystyle \mathrm {d} S= {\frac {\delta Q} {T}}\,} Hence:

  8. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    A substance at non-uniform temperature is at a lower entropy (than if the heat distribution is allowed to even out) and some of the thermal energy can drive a heat engine. A special case of entropy increase, the entropy of mixing, occurs when two or more different substances are mixed. If the substances are at the same temperature and pressure ...

  9. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.