Search results
Results from the WOW.Com Content Network
Binary systems containing neutron stars often emit X-rays, which are emitted by hot gas as it falls towards the surface of the neutron star. The source of the gas is the companion star, the outer layers of which can be stripped off by the gravitational force of the neutron star if the two stars are sufficiently close.
"There could be exotic kinds of particles or states of matter, such as quark matter, in the centers of neutron stars, but it's impossible to create them in the lab. The only way to find out is to understand neutron stars." [40] Using XMM-Newton, Bhattacharyya and Strohmayer observed Serpens X-1, which contains a neutron star and a stellar ...
A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation. [1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds ...
Neutron stars are the collapsed cores of supergiant stars. [1] They are created as a result of supernovas and gravitational collapse, [2] and are the second-smallest and densest class of stellar objects. [3] In the cores of these stars, protons and electrons combine to form neutrons. [2] Neutron stars can be classified as pulsars if they are ...
Possibilities include a black hole-neutron star collision, a neutron star-neutron star collision, a black hole-black hole collision, or some phenomenon not yet considered. In 2010 there was a new report of 16 similar pulses from the Parkes Telescope which were clearly of terrestrial origin, [ 19 ] but in 2013 four pulse sources were identified ...
In X-ray astronomy, quasi-periodic oscillation (QPO) is the manner in which the X-ray light from an astronomical object flickers about certain frequencies. [1] In these situations, the X-rays are emitted near the inner edge of an accretion disk in which gas swirls onto a compact object such as a white dwarf, neutron star, or black hole.
Artist's impression of neutron stars merging, producing gravitational waves and resulting in a kilonova Kilonova illustration. A kilonova (also called a macronova) is a transient astronomical event that occurs in a compact binary system when two neutron stars (BNS) or a neutron star and a black hole merge. [1]
For a black body (a perfect absorber) there is no reflected radiation, and so the spectral radiance is entirely due to emission. In addition, a black body is a diffuse emitter (its emission is independent of direction). Blackbody radiation becomes a visible glow of light if the temperature of the object is high enough. [19]