enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    This triple repetition code is a Hamming code with m = 2, since there are two parity bits, and 2 22 − 1 = 1 data bit. Such codes cannot correctly repair all errors, however. In our example, if the channel flips two bits and the receiver gets 001, the system will detect the error, but conclude that the original bit is 0, which is incorrect.

  3. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code. [5] FEC can be applied in situations where re-transmissions are costly or impossible, such as one-way communication links or when transmitting to multiple receivers in multicast.

  4. File:Hamming(7,4) example 1101 with extra parity.svg

    en.wikipedia.org/wiki/File:Hamming(7,4)_example...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  5. Hamming (7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    Since the source is only 4 bits then there are only 16 possible transmitted words. Included is the eight-bit value if an extra parity bit is used (see Hamming(7,4) code with an additional parity bit). (The data bits are shown in blue; the parity bits are shown in red; and the extra parity bit shown in green.)

  6. Parity bit - Wikipedia

    en.wikipedia.org/wiki/Parity_bit

    See Hamming code for an example of an error-correcting code. Parity bit checking is used occasionally for transmitting ASCII characters, which have 7 bits, leaving the 8th bit as a parity bit. For example, the parity bit can be computed as follows. Assume Alice and Bob are communicating and Alice wants to send Bob the simple 4-bit message 1001.

  7. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones'-complement operation prior to transmission to detect unintentional all-zero messages. Checksum schemes include parity bits, check digits, and longitudinal redundancy checks.

  8. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    The parity bit may be used within another constituent code. In an example using the DVB-S2 rate 2/3 code the encoded block size is 64800 symbols (N=64800) with 43200 data bits (K=43200) and 21600 parity bits (M=21600). Each constituent code (check node) encodes 16 data bits except for the first parity bit which encodes 8 data bits.

  9. Block code - Wikipedia

    en.wikipedia.org/wiki/Block_code

    As mentioned above, there are a vast number of error-correcting codes that are actually block codes. The first error-correcting code was the Hamming(7,4) code, developed by Richard W. Hamming in 1950. This code transforms a message consisting of 4 bits into a codeword of 7 bits by adding 3 parity bits. Hence this code is a block code.