Search results
Results from the WOW.Com Content Network
A small phone book as a hash table. In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. [2]
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
For a pair of types K, V, the type map[K]V is the type mapping type-K keys to type-V values, though Go Programming Language specification does not give any performance guarantees or implementation requirements for map types. Hash tables are built into the language, with special syntax and built-in functions.
Like Bloom filters, these structures achieve a small space overhead by accepting a small probability of false positives. In the case of "Bloomier filters", a false positive is defined as returning a result when the key is not in the map. The map will never return the wrong value for a key that is in the map.
As LMDB is memory-mapped, it can return direct pointers to memory addresses of keys and values through its API, thereby avoiding unnecessary and expensive copying of memory. This results in greatly-increased performance (especially when the values stored are extremely large), and expands the potential use cases for LMDB.
Instead, both map and filter can be created using fold. In map, the value that is accumulated is a new list, containing the results of applying a function to each element of the original list. In filter, the value that is accumulated is a new list containing only those elements that match the given condition.
The term magic number or magic constant refers to the anti-pattern of using numbers directly in source code. This has been referred to as breaking one of the oldest rules of programming, dating back to the COBOL, FORTRAN and PL/1 manuals of the 1960s. [1]
Delete word to the right of cursor Ctrl+Del ⌥ Opt+Del or ⌥ Opt+Fn+← Backspace. Ctrl+Del: Meta+d: dw (delete space too)or. de (keep space) Ctrl+Search+← Backspace: Delete word to the left of cursor Ctrl+← Backspace ⌥ Opt+← Backspace: Ctrl+← Backspace: Ctrl+← Backspace or. Meta+← Backspace. dge (delete space too)or. db (keep ...